
J. Chem. Soc., Perkin Trans. 2, 1997 2375

Conformational non-linear dynamical behavior of the peptide Boc-
Gly-Leu-Gly-Gly-NMe
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The conformational motion of  a peptide has been investigated by means of  molecular dynamics
simulations and has been characterized in the time and the frequency domains. The tetrapeptide Boc-Gly-
Leu-Gly-Gly-NMe has been considered as a model for some repetitive amino acid sequences of  glycine-
rich regions of  elastin, which could play a key role in the entropic elasticity mechanism. The classical tools
of  dynamical analysis (time series, spectral density, time correlation functions, delay maps) have been used
and new methods, introducing the idea of  travelling trajectory packets and trajectories in the frequency
space, have been developed. In vacuo, non-ergodic, essentially quasiperiodic motion has been revealed
and solitons have been observed according to the non-linear dynamical behavior of  systems with small
anharmonic perturbation. This particularly concerns the dynamics of  the end-to-end distance, a global
variable very sensitive to the whole conformational flexibility of  the model molecule. The dynamical
picture has been joined with the experimentally observed conformational disorder and with the amplitude
instability of  KAM theory for non-linear systems: a transition is hypothesized from quasiperiodic
(solitons) to ergodic motion (Hamiltonian chaos) for the peptide in solution and the entropic mechanism
of  elastin elasticity is interpreted from a new and unitary dynamical point of  view.

Introduction
In recent years the study of complex dynamical systems in
many different fields has received growing interest, and a unify-
ing approach has been found to be useful for the description of
the universal behavior of time evolutions.1,2

From the dynamical point of view a molecule is a complex
system because of the highly non-linear bonded and non-
bonded interaction forces. In the exact analytical solution of
the linear approximate problem, the molecular motion, corre-
sponding to small amplitude oscillations, is given by the super-
position of the vibrational normal modes. Nevertheless, if  the
molecule is a flexible system, which can undergo large confor-
mational changes, the motion cannot be described, even
approximately, by the linear theory. In these cases the molecular
dynamics approach provides an approximate numerical solu-
tion to the exact classical equation of motion and self-
organized dynamical behavior, such as chaos or solitons that
have no equivalent in the linearized problem, can emerge. This
has important consequences in equilibrium statistical mechan-
ics where an equal a priori probability for sampling any point
on the constant energy surface of an isolated system is
assumed: the so-called equiprobability principle or ergodic
hypothesis. In Maxwell’s words: ‘The only necessary argument
for a direct proof of the problem of the thermodynamic equi-
librium is that the system, if  left alone in its present motion
state, will pass, sooner or later, through all the phases that are
in agreement with the energy equation’.3 Moreover, Boltzmann,
searching for a molecular mechanism that assured at thermal
equilibrium the validity of the Maxwell’s distribution of the
velocities, had to assume final molecular chaos from the outset.
Nowadays, the theory of dynamical systems allows us to under-
stand how stochastic behavior can take place in the determin-
istic non-linear description of reality.4–7

In molecular dynamics simulations, the equations of motion
are non-integratable and the computed trajectories can be
ergodic 8 and chaotic,9 assuring the evolution of the system
from a non-equilibrium to an equilibrium state.10 Nevertheless,
if  the anharmonic perturbations are small, non-ergodic essen-

tially quasiperiodic motion can occur and solitons can be
observed.

In this work we have simulated the time evolution of an iso-
lated peptide coupled to an external heat bath and character-
ized its dynamical behavior using the trajectories of structural
parameters under the conceptual framework that ‘the time
series talk by themselves’.11

The typical tools of dynamical system analysis, such as time
correlation functions, spectral densities and delay maps, have
been used and new techniques have been developed by intro-
ducing the concepts of a traveling trajectory packet and the
trajectory in the frequency domain, with the aim of studying
the motion of an isolated tetrapeptide.

The amino acid sequence -Gly-X-Gly-Gly- (X = Val, Leu,
Ala) is a repetitive block of elastin and it is believed to play an
important role in the entropic protein elasticity.12 Accordingly,
some peptides corresponding to this sequence have been syn-
thesized and studied from an experimental point of view.13–15

Furthermore, the model tetrapeptide Boc-Gly-Leu-Gly-Gly-
NMe has been extensively investigated by using computational
techniques.16–19

In a previous work 16 an exhaustive conformational analysis
was carried out and the minimum energy structures (con-
formers) were identified and characterized. The most stable
conformer is typically identified by a type II β-turn involving
the hydrogen bond [Gly1]CO ? ? ? HN[Gly4]. In particular, from
the anti-correlated behavior of a pair of torsion angles inside
the β-turn the existence of a free librational motion of the pep-
tide unit inside the turn was hypothesized, and later observed.18

Moreover, large -Gly-Gly- chain motions were identified and
interpreted as fluctuations occurring between the folded global
minimum of the tetrapeptide and the transition state of its
conversion to an extended conformation.18 All these peptide
motions could well be a source of molecular entropy.

In the present work a study of the dynamics of the most
stable conformer, which best fits the experimental evidence
(Fig. 1) has been carried out with the purpose of describing
the nature of the molecular motion around this stationary
point, and to identify the molecular origin of the possible
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contributions to the entropy involved in the elasticity
mechanism.

Theoretical model
AMBER 4.0 program 20 was used on a VAX 6510 under the
VMS 5.5 operating system. The molecular potential energy has
been computed by the Wiener et al. all atoms force field 21 where
a partition of the energy is assumed, as a sum of stretching,
bending, torsional, non-bonded and H-bonded terms.

The theoretical study of dynamics for large biological mol-
ecules involves the calculation and analysis of trajectories: the
atomic positions and velocities as time functions are given by
numerical solution of the classical equations of motion.22–25 In
molecular dynamics (MD) simulations the internal forces are
calculated from the gradient of the potential energy, whereas
the external ones are determined by the interaction with an
external heat bath maintained at constant temperature accord-
ing to Berendsen’s method.26

The equations of motion were integrated in cartesian

Fig. 1 Lowest energy conformer of the tetrapeptide Boc-Gly-Leu-
Gly-Gly-NMe. Hydrogen bonds Dij and end-to-end distance DEE are
shown as dashed lines. The investigated torsion angles φ2, ψ2, χ

1, χ2 are
indicated.

coordinates via the Verlet leap-frog algorithm 27 with holonomic
constraints of the bond distances at equilibrium values, using
the SHAKE routine.28 In our MD simulation the integration
time step was 2 fs, and coordinates and energies were stored
every 20 steps. A time period of 200 ps was simulated.

We observe that Berendsen’s method is not Hamiltonian:
the total energy of the system, at thermal equilibrium with
a constant temperature heat bath, can fluctuate. The corre-
sponding dynamical equation includes a non-Newtonian iso-
thermal acceleration term designed to keep the instantaneous
kinetic energy constant. For a single oscillator this approach
reduces to a Rayleigh non-conservative, non-linear differential
equation,29,30 shown in eqn. (1), which could sustain a self-

x.. 2 η(1 2 x.2)x. 1 F(x) = 0 (1)

excited oscillation,31,32 η being a damping factor and F(x) a
non-linear force. Then, from this point of view, the molecular
system can be considered as an ensemble of Rayleigh non-
linearly coupled oscillators.

Initial conditions and equilibrium approach
The starting point of our simulation is the final state (i.e. the set
of atomic positions and velocities) which lies inside the global
minimum well (not corresponding to the minimum point),
obtained by MD simulated annealing at 300 K, as reported in a
previous work:17 in this way the initial state should be close
enough to the target equilibrium temperature.

In Fig. 2 the temperature and the total, potential and kinetic
energies as functions of time during the whole simulation are
reported. The relaxation of the system to the equilibrium state,
with invariant averages and amplitude fluctuations, is apparent.
Moreover, the energy dissipation is due to the damping of the
kinetic energy fluctuations which corresponds to the decrease
of the potential energy toward the global minimum point.

In MD simulations it is of paramount importance to solve
the initialization problem, i.e. the discrimination of the initial
non-equilibrium transient from the final thermal equilibrium
state, which one is interested in. We propose a quantitative cri-
terion based on the decay of total energy as a function of time
and have found that the energy dissipation is closely exponen-
tial and can be fitted by eqn. (2) with a = 46.0 kcal mol21,

Fig. 2 History plots of temperature (T ) and total (Etot), potential (Ep) and kinetic (Ek) energies vs. time during 200 ps of MD simulation
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E(t) = ae2bt 2 c (2)

b = 0.074 ps21, c = 144.0 kcal mol21. From this we assume the
end of the transient stage as the time, about 100 ps, when the
energy difference with respect to the asymptotic value is less
than the fluctuation amplitude δE. Therefore we have studied
the dynamics of the tetrapeptide molecule from this point.

Data analysis and numerical methods
The analysis has been focused on the study of the trajectories of
the following structural parameters, both in the time and in the
frequency domain, and phase space reconstruction from time
series has been carried out. Local and global parameters have
been studied. Four torsion angles φ2, ψ2, χ

1, χ2 of  the leucyl resi-
due were taken into account, because they are the most charac-
teristic of the motion of the tetrapeptide backbone. In addition,
two hydrogen bond distances involving the seven- and ten-
membered cycles, [Boc]C]]O ? ? ? HN[Leu2] (D02) γ-turn and
[Gly1]C]]O ? ? ? HN[Gly4] (D14) β-turns respectively, whose
existence is supported by many theoretical and experimental
evidences, were taken into account.

Finally a global parameter, namely the end-to-end distance
(DEE) between the tertiary carbon atom of Boc and the amidic
carbon atom of NMe, has been considered for the study of
collective motion, as it is an expression of the folding degree of
the molecule.

All of these variables have been analyzed in terms of time
normalized auto-correlation functions, see eqn. (3), where ∆x =
x(t) 2 〈x(t)〉 and ∆2x = [x(t) 2 〈x(t)〉]2.

Cx(τ) = 〈∆x(t) ∆x(t 1 τ)〉/[〈∆2x(t)〉〈∆2x(t 1 τ)〉]¹² (3)

In order to avoid the systematic decay of the statistical accur-
acy for the correlation function caused by the finite size of the
time series,33 we have chosen the shifted series as one-half  of the
series after the equilibration time, so that the number of the
terms of the scalar product is constant (1250 points). Accord-
ingly, we have considered 100 ps < t < 150 ps and 0 < τ < 50
ps, with a time shifting step δτ = δt = 0.04 ps. Since the corre-
lation function is a generalization of the correlation coefficient,
i.e. the cosine of the angle between two vectors whose com-
ponents are the terms of the time series, we have normalized
our results with respect to the square root of the product of
variances of the stationary and shifted series. In a similar way
we have studied the cross-correlation functions between all the
structural parameters mentioned above [eqn. (4)].

Cxy(τ) = 〈∆x(t) ∆y(t 1 τ)〉/[〈∆2x(t)〉〈∆2y(t 1 τ)〉]¹² (4)

In addition the corresponding spectral densities are calcu-
lated from eqns. (5) and (6), where the frequency has been

Fx(x,y)(ω) = ΣτCx,(x,y)(τ) cos(ωτ) 2 iΣτCx,(x,y)(τ) sin(ωτ) (5)

|Fx(x,y)(ω)|2 = [ΣτCx(x,y)(τ) cos(ωτ)]2 1 [ΣτCx(x,y)(τ) sin(ωτ)]2 (6)

varied up to the Nyquist critical frequency ωmax = 1/(2δτ) with a
step of δω = 1/∆t, imposed by the sampling and the simulation
times. Finally, all structural parameters were studied in a
reconstructed phase space,34,35 through the plots of the two-
dimensional delay maps, with the purpose of detecting the
attractors. In this space underlying the coordinate axes are the
time series and the shifted series is obtained from the original
one by moving it to an integer multiple of a given time period.
In our case, from the original time series x(t) the translated
series y(t) = x(t 1 τ) is constructed and a two-dimensional plot
is obtained considering x(t) and y(t) as the coordinate of a
point P(t). The examination of the path of P(t) gives some
information about the attractor of the dynamical system or,
more exactly, its projection in a subspace of lower dimension.

The shift parameter τ used in the present work (0.2 ps) was
established through an appropriate screening and the selected
value corresponds to the appearance of the most ordered
structure.

The above analysis gave significant results (that is the appear-
ance of a structured path) only for the global variable end-to-
end distance. However, the local variables gave unstructured
patterns, indicating a major complexity of motion.

Results

Time series and autocorrelation functions
In Fig. 3A–G the time series of the above mentioned key struc-
tural parameters, their autocorrelation functions and Fourier
transforms are given. The history plots of dynamical variables
are shown for the whole simulation (0 < t < 200 ps), whereas
the autocorrelation functions and the power spectra are
reported only for the equilibrium state (t > 100 ps).

The behavior of the time series shows a steady-state, which
occurs after the transient stage defined above on the basis of the
temperature and energy time evolution.

One observes that the transient is characterized by a number
of different behaviors: (a) relatively large fluctuations around
the equilibrium value of the global minimum conformer (Fig.
3A,B); (b) fast deviations from the equilibrium structure to
extended short-lived conformations (Fig. 3E,F) as confirmed
by the spike in the end-to-end distance trajectory (Fig. 3G); (c)
a conformational transition from trans to gauche(1) of the tor-
sion angle χ2 (Fig. 3D); (d) finally, the formation of a medium-
lived structure through a transition from gauche(2) to trans
indicated by the jump in the χ1 torsion angle (Fig. 3C). Points
(c) and (d) agree with the expected mobility of the aliphatic
chain.36,37

The long-time motion is analyzed in more detail in the auto-
correlation functions and power spectra reported in Fig. 3. The
correlation functions evidence the possible periodicity of the
motion, whose frequency components appear as peaks in the
corresponding power spectrum. According to the International
System of units the frequencies are expressed in ps21. In order
to facilitate the reading of plots note that 1 ps21 corresponds to
33.356 409 5 cm21.

From the plot analysis we observe the following patterns: (1)
low frequency oscillations, about 1 ps21 (Fig. 3E); (2) high
frequency oscillations, about 7 ps21 (Fig. 3C,D,F); (3) a wide
frequency spread on the whole explored range (Fig. 3A,B,G).
Case (1) is observed only for the hydrogen bond distance
[Boc]C]]O ? ? ? HN[Leu2] (D02) involved in the formation of the
γ-turn. Case (2) is typical of the torsion angles of the side-chain
group and of the hydrogen bond distance D14. A comparison
of the frequency peak of D14 with that of D02 shows more
stiffness in the H bond in the 10-membered ring, indicating a
greater stability of the larger secondary structure with respect
to the other. This confirms previous experimental evidence
obtained by the study of NMR temperature coefficients of
amide protons. In fact, the NH chemical shift showed a larger
temperature dependence for the amide proton involved in
the γ-turn with respect to that involved in the β-turn. This
is an indication of a greater force constant for the latter
bond. On the contrary, the situation is reversed when leucine
is substituted by valine,13 as we will subsequently explain. The
vibrational frequency of the χ torsion angles is exactly the
same, and this suggests a close coupling between them.

Finally the mixed behavior [case (3)] is observed for the
backbone torsion angles and for the end-to-end distance,
indicating a more complex motion of the chain. It is appar-
ent that no integer ratios between the frequency values found
in the spectrum exist. This situation may lead to complex
motions in the cartesian coordinate space, similar to the open
paths of the Lissajous figures.38 In fact, if  we consider the
effective motion of the atoms around the equilibrium point,
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Fig. 3 Time series (top), time autocorrelation function (middle) and spectral density (bottom) of the following dynamical variables: torsional
angles (A) φ2, (B) ψ2, (C) χ1, (D) χ2, (E) H-bond distances D02, (F) D14 and end-to-end distance (G) DEE

with irrational frequency ratios, as a superposition of a num-
ber of vibrational motions along various directions, then the
trajectory will fill densely a subset of the phase space during the
motion.

Time cross-correlation functions
In order to understand possible coupling between different
motions inside the molecule, we have studied the cross-
correlation functions between the dynamic behavior of the
structural parameters and their Fourier transforms. The results
(21 graphic outputs) indicate: (1) low frequency (about 1 ps21)
correlations; (2) high frequency (about 7 ps21) correlations; (3)
a superposition of low and high frequency correlations. The
first type is observed in the following correlations: D02/D14, D02/
φ2, D02/χ

1, D02/ψ2, D14/φ2, DEE/φ2 and DEE/D02. A representative
plot of the couple D02/φ2 is reported in Fig. 4 where a decrease
in correlation as a function of time is also observed, leading
to fully uncorrelated motions (dissipation of correlation). This
indicates a tight low frequency correlation between the hydro-
gen bond in the seven-membered cycle and the torsion angle of
leucine, which is in agreement with the low vibrational fre-
quency of the [Boc]C]]O ? ? ? HN[Leu2] hydrogen bond previ-
ously observed. The driving force of this motion is assigned to
the practically free fluctuations of the high-inertial side chain
of leucine, and this can be considered to be the cause of the
weakness of the previously discussed γ-turn H-bond.

The second type of cross-correlation is observed in the fol-
lowing cases: DEE/χ2, D14/χ

1, φ2/χ
2, χ2/ψ2, χ

2/ψ2, χ
1/χ2 and DEE/

D14. In Fig. 4 a sharp monofrequency plot (χ1/χ2) and a more
representative multifrequency plot (DEE/χ2) are shown. This
behavior seems to be typical of correlations involving the side-
chain torsion angles χ1 and χ2, and may be explained by con-
sidering that the latter refers to displacement of few atomic
masses. The observed frequency value is the same as that of the
autocorrelations of those variables, showing the tight coupling
between adjacent torsions in an aliphatic chain, probably due to
the conservation of a local angular momentum. The high fre-
quency cluster observed in the DEE/χ2 spectrum shows a non-
trivial correlation between the global and a local parameter,
indicating the high collective molecular motion due to signifi-
cant coupling between degrees of freedom.

Finally, the third type of spectrum is characterized by a
superposition of low and high frequency, and is observed for
DEE/ψ2, D02/χ

2, D14/χ
2, D14/ψ2, φ2/χ

1, φ2/ψ2, χ
1/ψ2 and DEE/χ1. A

typical plot is the DEE/ψ2 reported in Fig. 4. The observed
behavior is related to the analogous behavior of the auto-
correlations of the same variables and shows a strong coupling
between them. The explanation can be based on the observ-
ation of the key role played by the Leu group as a central pivot
of the molecular collective motion.

In all cases one may observe that an apparently very complex
signal is always resoluble in a limited number of harmonic oscil-
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Fig. 3 (continued )

lations, indicating that the motion is essentially quasiperiodic.
The above observation is in line with the expected behavior for a
system moving around its stable equilibrium point.

Trajectory in the frequency domain
Fig. 5 shows the plot of the complex Fourier transform of the
end-to-end distance trajectory as a function of the frequency.
The trajectory in the frequency domain, that is the dual of the
usual trajectory in the time domain, is thus defined. In our
opinion, this kind of analysis can be useful for characterizing
the motion of the system. In fact, it confirms the essentially
quasiperiodic character of the collective molecular motion evi-
dencing a disordered coil, although still well structured, similar
to that detected by delay-maps analysis in the time domain. The
plot of Fig. 5, whose shape is like a twisted elastic band,39,40

shows that one can differentiate the essentially quasiperiodic
motion seen for our system from a completely random motion
and from a few frequency band period motion, where we have
verified that a scattered coil or a structured loop are obtained,
respectively, as a consequence of the phase correlations. In this
way, and at variance with the usual spectral density plot, the
whole dynamical information contained in the Fourier trans-
form is retained and can be used as a sound basis for analysis.

Phase space reconstruction
Fig. 6 shows the phase–time trajectory of the end-to-end dis-
tance in the space DEE(t), DEE(t 1 τ), t (delay time τ = 0.2 ps)
during the last 50 ps of the simulation. A structured motion in

this fuzzy helix is apparent. In fact our observations strongly
support the idea that the prevalent structure of the attractor is
essentially a limit cycle described with roughly constant angular
velocity. To test the above hypothesis we have studied the
motion in the plane DEE(t), DEE(t 1 τ) and we have calculated
the time dependence of the polar angle from the approximate
center of the orbits, and its time derivative. In the following, x
is a short-hand notation for DEE. The center C of the loops
was calculated as the mean of the x(t), x(t 1 τ) data [eqns. (7)

xC = 〈x(t)〉 (7)

and(8)] then the coordinates were translated carrying the origin

yC = 〈x(t 1 τ)〉 (8)

in C and a new set of data x9(t), x9(t 1 τ) was obtained. The
polar angle in respect to the x9(t) axis is calculated as a function
of time from eqn. (9).

θ = tan21 x9(t 1 τ)/x9(t) (9)

The corresponding discrete time derivative of θ, i.e. θ
.
= ∆θ/δt,

where ∆θ is the angle described during the time interval δt, is
obtained from Carnot’s theorem [eqn. (10)], which can be satis-
fied by eqns. (11)–(13).

∆θ = cos21(r1
2 1 r2

2 2 s2)/(2r1r2) (10)
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Fig. 4 Time cross-correlation functions and corresponding spectral densities for representative couples of dynamical variables: D02/φ2, χ
1/χ2, DEE/χ2

and DEE/ψ2

r1
2 = x9(t 1 τ)2 1 x9(t)2 (11)

r2
2 = x9(t 1 δt)2 1 x9(t 1 δt 1 τ)2 (12)

s2 = [x9(t 1 δt) 2 x9(t)]2 1 [x9(t 1 δt 1 τ) 2 x9(t 1 τ)]2 (13)

The results are shown in Fig. 7, where one can see that
the polar angle varies from π/2 to 2π/2 nearly periodically, and
the angular velocity is stabilized around a constant value of 7.2
rad ps21 (except for a few localized spikes) corresponding to a
frequency of 1.15 ps21. This is in excellent agreement with the
position of the low frequency peak in the power spectrum of

Fig. 5 Plot of the complex Fourier transform of the end-to-end
distance DEE as a function F(ω) = a 1 ib during the 100 ps of MD
thermal equilibrium

the end-to-end distance correlation function. Therefore the
observed coil is an expression of the low frequency motion of
the global molecular parameter and may be considered to be a
section of the attractor lying in the true phase space.

Note that attempts to obtain similar behavior utilizing local
molecular parameters, including those whose time series seems
to be rather ordered, failed completely and a random delay map
was inevitably obtained. This is a clear demonstration that, at

Fig. 6 Phase-time trajectory of the end-to-end distance in the space of
DEE(t), DEE(t 1 τ) and t for τ = 0.2 ps and 150 < t < 200 ps
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the considered temperature value, a low frequency ordered
motion exists as the basis of the collective behavior of this
coupled, non-linear molecular system.

Fig. 8 shows conformations corresponding to the maximum
excursion of the DEE distance, ranging from 4 to 6 Å. The
corresponding shape of the molecular backbone suggests that

Fig. 7 Time evolutions of polar angle θ and time derivative θ? describ-
ing the angular position and velocity, respectively, for the projection in
the plane DEE(t), DEE(t 1 τ) of the trajectory reported in Fig. 6 (see
text for detailed discussion)

Fig. 8 Conformation snapshots corresponding to the maximum
excursion of the end-to-end distance during the MD thermal equi-
librium: DEE = 4.0 (A) and 6.0 Å (B)

the low frequency vibration, largely prevalent in the collective
molecular motion, corresponds to the fundamental mode of a
U-shaped, diapason-like structure.

Traveling trajectory packets
In order to detect and characterize the time-dependent
vibrational picture of the molecular system at the thermal equi-
librium, we have developed a new method of analysis in which
a family of delayed and bounded time series is generated, and
their characteristic functions are constructed. In the analysis
carried out by Wright,41 characteristic functions of delayed
series were used to monitor changes in dynamical systems.
Moreover, the overlapping Fourier transforms are a well known
technique in other areas, e.g. speech processing or signal
processing.42 By analogy with the wave packets of quantum
mechanics the so defined time series may be called traveling
trajectory packets (TTP). In particular, we have taken into
account the end-to-end distance time series and the TTP of
length ∆t = 50 ps, starting at tn = nT (n is an integer number and
T = 5 ps) from the equilibrium onset point (at 100 ps), have
been considered. This family of packets can be represented as Sn

(t, tn) and it was used to calculate the correlation functions,
normalized in each time interval, and the corresponding
Fourier spectra. In this way we have constructed a family of
correlation functions Cn (τ,tn) and a family of power spectra Fn

(ω,tn) which can be called dynamical correlations and Fourier
surfaces, respectively. In Fig. 9A and B the Fourier surface is
reported as a series of cross-sections and an isointensity map,
respectively. The plots of Fig. 9 clearly show a non-station-
ary vibrational state, i.e. an aperiodic motion-sharing among
vibrational modes during the time evolution of the end-to-end
distance as a consequence of the non-linear dynamics of the
system. This is antithetic to the stationary behavior expected by
superposition of normal modes of a linear problem. Moreover,
at least for the considered timescale, we did not observe any
recurrence time,43 probably due to the high complexity of
the investigated system. The vibrational behavior emerged
from the previous overall correlation and Fourier analysis
can be considered as the resultant of the superposition of
all the vibrational non-stationary states developed during the
equilibrium trajectory.

Fig. 9 Dynamical Fourier surface Fn(ω,tn) of end-to-end distance DEE

as (A) a series of cross-sections and (B) an isointensity map during
the MD thermal equilibrium
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During the time evolution a succession of largely prevalent
vibrational modes is observed. The modes appear at increasing
times, corresponding to ω = 1.2, 6.72, 3.36 and 7.76 ps21. This
time vibrational evolution is similar to the outcome of Fermi’s
problem 44 where the dynamics of a weakly non-linear oscil-
lators lattice is interpreted in terms of solitons.45 These are the
analogues in non-linear systems of the normal modes of linear
problems or the non-linear normal modes 46 and are found
ubiquitously in many branches of science.47 If  the total energy
is too low to be affected by the system’s non-linearity, starting
from a single vibration normal mode, neither the energy equi-
partition among all the molecular degrees of freedom nor an
ergodic trajectory are observed, but instead an essentially
quasiperiodic and non-ergodic behavior characterized by the
presence of a soliton is observed. The activated soliton does not
share energy with the others (in a similar way to the normal
modes of a linear system) and is characterized by a recurrence
time or period which grows in a polynomial way as a function
of the number of interacting particles.48

The dynamics of a soliton are characterized by the energy
transfer among few normal modes (the lowest frequency ones)
in which the motion of the system from time to time is local-
ized. The end-to-end distance dynamics shows just such a
behavior, although, due to the system complexity and the time-
scale used in our simulation, it is not possible to define any
characteristic recurrence time.

Fig. 10 shows the curves Fn(tn), corresponding to the fre-
quency values giving the maximum intensity of the most
important observed vibrational modes. From the analysis of
the TTP of Figs. 9 and 10 we observe that: (1) the modes evolve
through a characteristic trend in the frequency–time plane. In
particular, the initial motion is largely localized in the mode
at 1.2 ps21. Then, this mode damps and motion and energy
are shared and accumulated in the vibration at 6.72 ps21. After
a short time interval during which no mode predominates
(see the following), a vibration at ω = 3.36 ps21 is activated with
half-frequency with respect to the preceding one. Then, the
motion again is transferred to a non-correlated vibration at
a higher frequency ω = 7.76 ps21. This trend from low to high
frequencies and vice versa shows a time drift toward the high
frequencies. The turn-over of high and low frequency modes
is observed also in Fermi’s system. This characteristic motion
sharing may be an expression of chaotic dynamics. A particular
meaning could have the step with frequency halving: this could
belong to a Feigenbaum’s cascade of period-doublings.49

Nevertheless from the inspection of the dynamical Fourier
surface an increase in the number of vibrational modes is not

Fig. 10 Curves Fn(tn) corresponding to the frequency values giving the
maximum intensity in Fig. 9: (a) ω = 1.2, (b) ω = 6.72, (c) ω = 3.36 and
(d) ω = 7.76 ps21

observed as expected from the corresponding subharmonic
cascade. (2) As previously mentioned, a time range exists
around tn = 125 ps where no prevalent vibrational mode is
observed but a delocalization of the motion among the differ-
ent degrees of freedom occurs, according to what is required
at thermal equilibrium by the energy equipartition principle.
We suggest that this may be a pattern of the universal coexist-
ence of deeply different behaviors observed during the dynam-
ical evolution of non-linear systems where order and chaos are
closely joined. In this case quasiperiodic behavior as solitons
and chaos as ergodic mixing motion restricted to around the
examined energy minimum would be joined.

In order to characterize the TTP of the end-to-end distance
from a statistical point of view the corresponding distribution
histograms have been computed. As previously carried out with
correlation functions and Fourier spectra, we have constructed
a family of density distributions Pn(DEE, tn) which can be called
a dynamical population surface. In Fig. 11A and B this surface
is shown as a series of cross-sections and as an isodensity map,
respectively. It is apparent that during the time evolution of
the end-to-end distance the statistical and vibrational evolution
of the system show significant and complex behavior due to
non-linear dynamics. The analysis shows that, apart from the
various structures emerging in the plots, significant changes are
observed only in the width of the distribution, due to the
fluctuation of DEE, while the mean value is practically time
invariant.

Discussion
It is well known that the motion of a conservative system of
multiple harmonic oscillators with small anharmonic perturb-
ations is essentially non-ergodic and quasiperiodic: the motion
in the phase-space is confined to a toroidal surface of smaller
dimensions than that of the constant energy surface. The trajec-
tory winds up the distorted torus densely and endlessly except
for a negligible set of initial conditions which may lead to
erratic motion on the whole energy surface (i.e. Arnold’s diffu-
sion).50 The vibrational modes of the system are the solitons.

Fig. 11 Dynamical population surface Pn(DEE, tn) of the end-to-end
distance as (A) cross-sections and (B) an isodensity map during MD
thermal equilibrium
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This dynamical behavior was discovered in the first molecular
dynamics simulation performed by Fermi et al. in the early
1950s.55 For such systems Kolmogorov stated and Arnol’d and
Moser proved that the KAM theorem holds:50 for a small non-
linear perturbation the motion is essentially non-ergodic and
quasiperiodic.

What happens when one violates the slightly non-integrable
condition (small anharmonicity) of the KAM theorem? This
appears to be a very difficult problem as Hamiltonian chaos (i.e.
ergodicity and phase-space instability) may take place. KAM
theory indicates the existence of an amplitude instability for
conservative non-linear oscillators which allows a transition
from essentially quasiperiodic motion to predominantly
ergodic motion, when the extent of perturbation increases.51

Zabusky and Deem 52 investigated this possibility in Fermi’s
problem and they demonstrated that for a large amplitude of
motion the system exhibits widespread energy sharing among
the vibrational modes. Nonetheless complete equipartition of
energy was not achieved and the motion exhibited a correlation
inconsistent with complete ergodicity at thermal equilibrium. It
is unclear whether incomplete KAM instability or the constant
high-order correlation of the type derived by Prigogine 53 was
observed by Zabusky and Deem.52

Moreover, Saito and Hiraoka 54 found that in Fermi’s prob-
lem the energy partition among modes takes place abruptly
after an induction period starting from higher modes when the
energy exceeds a threshold value. The Fermi’s solitons seem to
be due to the fact that the total energy, which depends on the
initial mode, was not large with respect to the non-linearity of
the system.

In molecular dynamics simulations the molecular chain is a
system of multiple oscillators generally referred to as cartesian
coordinates. The potential energy surface arises not only from
simple harmonic terms (e.g. bond stretching, which is generally
quadratic in both internal and cartesian coordinates), but also
from terms that are anharmonic in cartesian coordinates (e.g.
bond angle bending), even though they may be harmonic in
internal coordinates, as well as terms that are anharmonic in
both internal and cartesian coordinates (e.g. torsional and non-
bonded strains).

For small amplitudes of conformational fluctuation around
an equilibrium point at a sufficiently low temperature, the sys-
tem behaves just like weakly non-linear coupled oscillators.
Then, the observed essentially quasiperiodic, KAM motion of
the tetrapeptide at room temperature is expected. Similarly, for
large amplitude motions at higher temperature or presumably
in solution,55 we expect an ergodic and orbitally unstable
chaotic motion to develop. It is interesting to note that the
behaviors of our canonical dynamics are similar to micro-
canonical dynamics, as expected from the statistical thermo-
dynamic point of view.

The tetrapeptide exhibits essentially quasiperiodic dynamics
of relatively low entropy at 300 K in vacuo. This is reminiscent
of the mechanical brittle behavior of dry or poorly hydrated
elastin which has been associated with a low entropy, enthal-
pically stable state.16 Experimentally, strictly related peptides in
aqueous solution show multiple conformational equilibria with
substantial molecular flexibility.13–15 This is a large internal
rotational motion that, associated with the KAM amplitude
instability, would ensure the motion in solution to be largely
chaotic, mimicking the viscoelastic properties of the high-
entropy, water-swelled protein.12

The KAM amplitude instability indicates that the extent of
the non-linear perturbation determines to what extent the
dynamical behavior will be chaotic and ergodic. Then, the
essentially quasiperiodic and non-ergodic behavior of the sys-
tem which satisfies the KAM theorem conditions and the
Hamiltonian chaos (e.g. of  a K-flow) for large amplitude
motions represents opposite limit cases of a continuous range
of intermediate behaviors. Similarly, the entropy (e.g. K-

entropy that is essentially the sum of all positive Lyapunov
exponents 50), being a measure of the degree of motion instabil-
ity of the system, will depend upon the extent of non-linear
components.

The physico-chemical consequences of KAM theory and
amplitude instability may be remarkable as far as macro-
molecular elasticity is concerned. In fact the picture we propose
is that relaxed conformations are related to chaotic dynamical
states, whereas the stretched conformations are connected to
essentially quasiperiodic motions. Accordingly, the change in
entropy on stretching, which is the driving force of the elasticity
mechanism, is related to a variation of the K-entropy of the
motion.

Let us briefly discuss the entropic mechanisms of elasticity of
elastin. In Flory’s theory of rubber elasticity 56 the relaxed state
is a random chain network with random distribution of end-to-
end chain lengths. This state corresponds to the maximum vol-
ume in the conformational space and then to the maximum
entropy. When the system is deformed a decrease in conform-
ational freedom occurs.

In our opinion, and as extensively proposed by one of us,12

the entropic mechanism of elasticity of elastin is essentially of
this kind. In the solvent entropy mechanism 57,58 the exposed
hydrophobic side chains of elastin are surrounded on deform-
ation by clathrate-like water of lower entropy than water
around the relaxed structure. In this way the entropic elasto-
meric force is due to a decrease in the mobility of water mol-
ecules around the stretched protein. Lastly, in Urry et al.’s
librational entropy mechanism of elasticity,59 the relaxed poly-
peptide chain exhibits internal librations of large amplitude
and low-frequency. The decrease in entropy on stretching is due
to damping of internal motions of the chain giving torsional
oscillations with a shift to higher frequencies. This mechanism
is believed to occur within short peptide segments included
within a regular structure named a β-spiral and constituted of
recurring type II β-turns.

From a dynamical point of view, a common feature of the
examined entropic mechanisms of elasticity is the maximum
mobility state corresponding to the maximum entropy relaxed
state. For the random coils of Flory’s relaxed state, and also for
the librational mechanism, the torsional skeletal vibrations can
be treated as hindered rotators, with large amplitude rotational
motions, displaying a largely non-linear dynamical behavior. In
contrast, in the extended state internal chain motions decrease
and small amplitude torsional oscillations take place. Similarly,
in the solvent entropy mechanism, diffusive motions of bulk
water in the relaxed maximum entropy state are substituted by
vibrational motions of clathrate water in the extended state.
Accordingly, it is possible to interpret by means of the dynam-
ical systems theory the entropic mechanisms of elasticity in a
global way and the entropy itself  as a dynamical parameter.

A necessary condition for a macromolecular system to show
elastomeric features is the highly chaotic dynamical behavior of
the relaxed state due to the strong non-linearity of the protein
and solvent large motions. The KAM amplitude instability
is believed to ensure in such conditions the development of
Hamiltonian chaos. Moreover, it is necessary that the molecular
system, on deformation in the presence of external constraints,
shows a dynamical essentially quasiperiodic behavior because
of small amplitude vibrational motions developed in such con-
ditions. This is not to say that in the extended state of the
protein folded conformers are dominant, as are those assumed
by our tetrapeptide in vacuo. Simply, whatever the conform-
ation may be, it should exhibit quasiperiodic dynamics.

Preliminary results of MD simulations carried out on this
peptide in dilute aqueous solution 60 show that all conform-
ational motions increase because of the effect of the solvent on
the dynamics of the formation/breaking of intramolecular
H-bonds. Moreover, the time correlation functions, power
spectra and Lyapunov exponents indicate that a chaotic
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Brownian-like intramolecular motion occurs. In addition, we
have verified that a similar conformational freedom also char-
acterizes the constrained hydrated peptide, assumed to model a
cross-linked chain in the relaxed state of the protein. In con-
trast, when the simulation is performed on a stretched con-
strained peptide, less freedom is observed and a very different
dynamical behavior is obtained indicating a transition to low
entropy, quasiperiodic soliton-like motion.60

Conclusions
This paper highlights the dynamic aspects of the molecular
structure of the tetrapeptide Boc-Gly-Leu-Gly-Gly-NMe, as a
complementary approach to the static chemical description. We
have analyzed a number of local molecular parameters (torsion
angles, hydrogen bond distances) and a global variable (end-to-
end distance) in order to gain insight into the conformational
flexibility of the lowest energy conformer. Through analysis of
the motion of the tetrapeptide we have observed that in con-
trast with the disordered behavior of local variables, the global
variable shows a well structured pattern, characterized by a
largely predominant low frequency motion. This suggests that
conflicting micro-motions cancel one another and an ordered
cooperative macro-motion results. Moreover, an analogous
behavior was observed in a system of locally and globally
coupled oscillators, where some macrovariables exhibit
quasiperiodic or chaotic behavior, even if  each element evolves
independently.61

When the amplitude of the molecular motion is small (e.g.
at sufficiently low temperature, or for a constrained state of
stretching) the system can be considered to be a collection of
weakly non-linearly coupled harmonic oscillators and the
corresponding motion is essentially non-ergodic and quasi-
periodic.62,63 The vibrational motions of this system are the
solitons, which localize the energy without equipartition: high
frequency vibrational modes remain inaccessible and only low
frequencies are significant.

This has been confirmed in a quite different molecular
system;64 poly(p-hydroxybenzoate), a semirigid liquid crystal
polymer. The kinematic behavior of the latter, simulated by the
same molecular dynamics approach, reveals a highly cooper-
ative chain motion similar to that exhibited by our tetrapeptide.
Although the two molecules are very different, their stiffness
properties are analogous and originate in the first case from the
covalent structure of the backbone chain, and in our more
flexible tetrapeptide from the hydrogen bonded network which
stabilizes the conformer.

The soliton concept has been used to investigate collective
phenomena in biophysical systems as the proton transport in
hydrated proteins or non-linear energy localization in DNA
thermal denaturation and transcription.65

When the molecular motion amplitude becomes large (e.g. at
higher temperature or for the flexible hydrated molecule) the
KAM amplitude instability gives rise to a Hamiltonian chaos.
The transition between these two kinds of motions should be
related to a change in a thermodynamic property such as
entropy.

Speculatively, the elastin macromolecule, of which our tetra-
peptide is a recurring sequence, could exhibit an analogous
behavior. As a matter of fact, one may suggest that the elastin
domains responsible for elasticity could be characterized by
similar non-linear conformational dynamics, especially because
sequences of the general type -Gly-X-Gly-Gly- are frequent
there. In explicit terms, one may envisage that an essential
contribution to the entropy of the relaxed state could come
from internal chaotic motion. On stretching, the motion would
became quasiperiodic, soliton-like and therefore a decrease of
entropy would occur. Overall, a re-interpretation of classical
elasticity theory 56 in terms of non-linear dynamics of the poly-
peptide chain(s) is proposed.
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